Human spinal locomotor control is based on flexibly organized burst generators.

نویسندگان

  • Simon M Danner
  • Ursula S Hofstoetter
  • Brigitta Freundl
  • Heinrich Binder
  • Winfried Mayr
  • Frank Rattay
  • Karen Minassian
چکیده

Constant drive provided to the human lumbar spinal cord by epidural electrical stimulation can cause local neural circuits to generate rhythmic motor outputs to lower limb muscles in people paralysed by spinal cord injury. Epidural spinal cord stimulation thus allows the study of spinal rhythm and pattern generating circuits without their configuration by volitional motor tasks or task-specific peripheral feedback. To reveal spinal locomotor control principles, we studied the repertoire of rhythmic patterns that can be generated by the functionally isolated human lumbar spinal cord, detected as electromyographic activity from the legs, and investigated basic temporal components shared across these patterns. Ten subjects with chronic, motor-complete spinal cord injury were studied. Surface electromyographic responses to lumbar spinal cord stimulation were collected from quadriceps, hamstrings, tibialis anterior, and triceps surae in the supine position. From these data, 10-s segments of rhythmic activity present in the four muscle groups of one limb were extracted. Such samples were found in seven subjects. Physiologically adequate cycle durations and relative extension- and flexion-phase durations similar to those needed for locomotion were generated. The multi-muscle activation patterns exhibited a variety of coactivation, mixed-synergy and locomotor-like configurations. Statistical decomposition of the electromyographic data across subjects, muscles and samples of rhythmic patterns identified three common temporal components, i.e. basic or shared activation patterns. Two of these basic patterns controlled muscles to contract either synchronously or alternatingly during extension- and flexion-like phases. The third basic pattern contributed to the observed muscle activities independently from these extensor- and flexor-related basic patterns. Each bifunctional muscle group was able to express both extensor- and flexor-patterns, with variable ratios across the samples of rhythmic patterns. The basic activation patterns can be interpreted as central drives implemented by spinal burst generators that impose specific spatiotemporally organized activation on the lumbosacral motor neuron pools. Our data thus imply that the human lumbar spinal cord circuits can form burst-generating elements that flexibly combine to obtain a wide range of locomotor outputs from a constant, repetitive input. It may be possible to use this flexibility to incorporate specific adaptations to gait and stance to improve locomotor control, even after severe central nervous system damage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flexibility in the patterning and control of axial locomotor networks in lamprey.

In lower vertebrates, locomotor burst generators for axial muscles generally produce unitary bursts that alternate between the two sides of the body. In lamprey, a lower vertebrate, locomotor activity in the axial ventral roots of the isolated spinal cord can exhibit flexibility in the timings of bursts to dorsally-located myotomal muscle fibers versus ventrally-located myotomal muscle fibers. ...

متن کامل

Simple cellular and network control principles govern complex patterns of motor behavior.

The vertebrate central nervous system is organized in modules that independently execute sophisticated tasks. Such modules are flexibly controlled and operate with a considerable degree of autonomy. One example is locomotion generated by spinal central pattern generator networks (CPGs) that shape the detailed motor output. The level of activity is controlled from brainstem locomotor command cen...

متن کامل

Defining rhythmic locomotor burst patterns using a continuous wavelet transform

We review an objective and automated method for analyzing locomotor electrophysiology data with improved speed and accuracy. Manipulating central pattern generator (CPG) organization via mouse genetics has been a critical advance in the study of this circuit. Better quantitative measures of the locomotor data will further enhance our understanding of CPG development and function. Current analys...

متن کامل

Descending control of turning locomotor activity in larval lamprey: neurophysiology and computer modeling.

The purpose of the present study was to examine the mechanisms that produce natural spontaneous turning maneuvers in larval lamprey. During swimming, spontaneous turning movements began with a larger-than-normal bending of the head to one side. Subsequently, undulations propagated down the body with greater amplitude on the side ipsilateral to the turn. During turning to one side, which usually...

متن کامل

Interaction between disinhibited bursting and fictive locomotor patterns in the rat isolated spinal cord.

Using a transverse barrier that allowed discrete application of neurochemicals to certain lumbar regions of the rat isolated spinal cord, we studied the intersegmental organization of rhythmic patterns recorded extracellularly from ventral roots and intracellularly from single motoneurons. Fictive locomotor patterns were elicited by serotonin (5-HT) and/or N-methyl-D-aspartate (NMDA) or high K(...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Brain : a journal of neurology

دوره 138 Pt 3  شماره 

صفحات  -

تاریخ انتشار 2015